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ABSTRACT
Computational methods are becoming increasingly used in the
drug discovery process. In this Account, we review a novel
computational method for lead discovery. This method, called
CombiSMoG for “combinatorial small molecule growth”, is based
on two components: a fast and accurate knowledge-based scoring
function used to predict binding affinities of protein-ligand
complexes, and a Monte Carlo combinatorial growth algorithm that
generates large numbers of low-free-energy ligands in the binding
site of a protein. We illustrate the advantages of the method by
describing its application in the design of picomolar inhibitors for
human carbonic anhydrase.

Identification of high-affinity binders (“leads”) for protein
targets is the first step in the process of drug discovery
and development and is usually a laborious and costly
enterprise1. In some cases, up to several thousands of
compounds need to be synthesized before a single lead
is found, and even then, there is no guarantee that it
would have the toxicological and pharmacological proper-
ties required of a drug.

It was recognized in the 60s, that computer-based
methods can be of help in the discovery of leads and can
potentially eliminate chemical synthesis and screening of

many irrelevant compounds.2-4 An ideal computational
method for lead discovery should be able to generate
structurally diverse leads rapidly and should give the
estimates of binding affinities that would correlate with
experimental values. The first requirement, that is, gen-
eration of chemical diversity in silico, is easily achieved
using existing computational resources and algorithms:
putative ligands can be either extracted from large data-
bases of compounds,5,6 or they can be “grown” compu-
tationally by joining molecular fragments7-9 (or atoms10)
stored in the computer’s memory. The second prerequi-
site, accurate prediction of binding affinities (or, equiva-
lently, binding free energies), has proven to be a much
more difficult task. Because of the multitude of energetic
and entropic factors involved, the thermodynamics of
binding cannot be analytically modeled without first
simplifying the problem. Computational methods that
attempt to design leads vary in the nature and in the
degree of the simplifying assumptions they use.11

In the first part of this Account, we categorize and
briefly discuss the existing computational approaches to
lead design. We then focus on a class of the so-called
knowledge-based methods that have their roots in protein-
folding studies but have recently become a promising
strategy for designing and evaluating leads. We describe
in detail a knowledge-based algorithm we developed,
called CombiSMoG for “combinatorial small molecule
growth”, that incorporates the philosophy of combinato-
rial synthesis into computational drug design, and can
rapidly generate large numbers of biased libraries of
virtual leads and give accurate estimates of their binding
affinities. Application of CombiSMoG to design extremely
potent inhibitors for human carbonic anhydrase described
in the last part of this Account illustrates the strengths
and the limitations of our approach.

1. State of the Art in Computational Methods for Lead
Discovery (CMLD). The CMLD can be divided into two
broad categories: those that do not require the knowledge
of the biological target, and those that do. The first class
of methods aims at correlating structural features of a
series of known compounds with their biological activities
and derives from these correlations multiparameter em-
pirical equations that are subsequently used to guide the
design of new leads. Early quantitative structure-activity
relationship (QSAR) methods related biological activity to
the presence (or absence) of functional groups in a series
of structurally related compounds (Free-Wilson model12),
or to the physicochemical properties (lipophilicity, elec-
tronic properties) of the compounds in the training set
(Hansch analysis13). More recently, three-dimensional
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QSAR methods have been developed14,15 in which chemi-
cally related molecules of known activities are super-
imposed, placed on a 3D grid, and a discretized activity
“field” around them is constructed by calculating their
interactions with imaginary probe atoms placed in the
nodes of the grid. Although QSAR models reproduce
binding affinities of ligands in many training sets more
accurately than other methods, and although they scored
spectacular success in some applications (e.g., a priori
prediction of binding orientation of dihydrofolate to
dihydrofolate reductase16), they have three major short-
comings: (i) there must already exist many leads for the
target under study to allow development of the structure-
activity relationships; (ii) the equations are parametrized
for one target and do not apply to another, so that they
are not transferable; and (iii) the QSAR methods are of
only limited use in understanding the nature of protein-
ligand interactions and thermodynamics of binding and
place emphasis on efficiency of lead design.

Structure-based (SB) approaches17-19 overcome many
of the limitations of QSAR, albeit at the expense of
knowing the three-dimensional structure of the target.
These methods aspire to develop a general theoretical
description of the protein-ligand interactions that would
enable an a priori design of new leads for an arbitrary
biological target. At the heart of every SB method lies the
so-called scoring function (also referred to as the force
field or potential), that is, a mathematical function whose
values are (or, at least in principle, should be) proportional
to the binding affinities of the leads. A good scoring
function should be able to give reliable estimates of
binding affinities of structurally diverse leads for different
protein targets. There are three major classes of scoring
functions20 that meet this criterion: (1) empirical all-atom
force fields, (2) “master equation,” and (3) knowledge-
based (KB) functions. The KB scoring functions will be
discussed in detail in Section 2.

Empirical force fields (e.g., OPLS,21 AMBER,22

CHARMM,23 and others) account for all atom-atom
interactions, which they calculate by summing bond,
angle, dihedral, electrostatic, and van der Waals terms,
and are parametrized against ab initio calculations, or
structural, dynamic, and thermodynamic properties of
small molecules or peptides. These force fields do not per
se provide the free energies of binding, but rather they
provide the energies of protein-ligand interaction in a
given conformation. The free energies are usually calcu-
lated by thermodynamic integration or free-energy per-
turbation methods.24,25 Such calculations are in many
cases accurate, but they are also computationally costly
and preclude the possibility of screening large numbers
of potential leads. Recently, there has been considerable
interest in developing faster, approximate free-energy
methods,26,27 that would estimate binding free energy from
the average interaction energies of the ligand bound to
the protein and unbound in the solvent. The accuracy of
these methods is, however, yet to be determined.

In the master equation methods (e.g., LUDI,28 VALI-
DATE,29 Eldridge, et al.30), the binding free energy is

arbitrarily decomposed into various enthalpic and en-
tropic terms (e.g., hydrogen bonding, number of flexible
bonds in ligands, and area of lipophilic contact) that are
represented by simple functional forms incorporating free
parameters. The parameters are obtained by optimization
procedures maximizing the correlation between the com-
puted and experimental binding free energies of a set of
complexes with known structures and binding constants.
These methods are fast and give relatively high correla-
tions for diverse training sets. It is unclear, however, how
accurately these approaches predict the binding affinities
in complexes that are not included in these sets.

2. Knowledge-Based Potentials (KBP). Knowledge-
based methods31 derive free energies of molecular inter-
actions from structural information contained in data-
bases of known protein-ligand complexes. The first KBPs
were developed as early as the 70s32 in the context of
protein-folding studies and related the frequencies of
occurrence of particular structural features X in globular
proteins to their “effective” free energies via a Boltzmann-
like relationship: NX ∼ exp(- FX/kT), where by “effective
free energy” we mean the energy of interaction between
X and the rest of the protein averaged over all solvent
configurations; this exponential dependence has been
substantiated by several experimental studies.33

Rapid advances in protein crystallography and NMR
techniques during the past decade allowed determination
of large numbers of three-dimensional structures of
protein-ligand complexes and, consequently, construc-
tion of meaningful KBPs describing protein-ligand inter-
actions (SMoG,34 PMF,35 BLEEP,36 Drugscore,37 and oth-
ers). All existing methods for deriving such potentials
relate the occurrences extracted from databases to ener-
gies in a Boltzmann-like fashion (Figure 1); in only a very
few instances, however, has the applicability of this
exponential relationship been discussed38,39 or justified.40

Since the statistical-mechanical arguments used in pro-
tein folding are not transferable to protein-ligand inter-
actions, the relevance of Boltzmann-like law to protein-
ligand complexes requires a separate derivation. A sketch
of such a derivation is given in the next section.

A. Boltzmann-Like Statistics of Interatomic Contacts.
Consider a database of ø protein-ligand complexes. Two
atoms, σp of the protein and σl of the ligand, are said to
form an intermolecular contact (σp,σl), if their separation
is smaller or equal to a cutoff distance Rc; the total number
of contacts in the database is denoted Nø. We wish to
relate the free energy F(σp,σl) of a contact (σp,σl) to the
probability of its occurrence in the database P(σp,σl) )
N(σp,σl)/Nø, where N(σp,σl) is the number of (σp,σl) contacts
in the database. We select a set of complexes that have
approximately equal protein-ligand interaction free ener-
gies FI. Let the number of complexes with the same FI be
denoted NFI, and the number of structures within this
set with interaction (σp,σl) present be NFI(σp,σl) )
NFI(∑ij*plF(σi,σj) ≈ FI - F(σp,σl)). The right-hand side of the
last equation expresses the fact that NFI(σp,σl) is equal to
the number of complexes in which the sum of interactions
other than (σp,σl) is equal to FI - F(σp,σl). Now three major
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assumptions are made: (i) that the database is large and
structurally diverse; (ii) that no single contact dominates
the interaction free energy, that is, FI . F(σp,σl); and (iii)
that the total free energy can be expressed as a sum of
pairwise energies (eq 1).

If the first condition is fulfilled, NFI(FI - F(σp,σl)) can be
assumed to be proportional to the number of ways in
which the contacts (σp,σl), (i,j * p,l), can be arranged to
give a stable complex with contact (σp,σl) present and
having total interaction free energy FI: ΩFI(FI - F(σp,σl)).
The second supposition allows expansion of the logarithm
of ΩFI(FI - F(σp,σl)) about FI, as in eq 2. Because the
derivative is only a slowly varying function of free energy
(∼d ln n!/dn ≈ ln n, where n is the number of atoms in

a ligand, it is well approximated as a constant, â. After
rearranging, and noting that ΩFI(FI - F(σp,σl))/ΩFI(FI) is

proportional to the probability of observing contact (σp,σl)
in the set of structures having interaction free energy FI,
we obtain P((σp,σl)|FI) ∝ exp(-âF(σp,σl)). Summation over
all values of interaction energies leads to the exponential
relationship between the probability P(σp,σl) of observing
contact (σp,σl) in the database and the free energy of this
contact F(σp,σl) (eq 3; Pref is a constant that will be
discussed in detail in the next section).

The derivation shows that the KB Boltzmann-like statistics
is applicable only if the database from which it is obtained
meets certain criteria. Overlooking these criteria may lead
to meaningless potentials:

(i) If a database is not large or structurally diverse, the
proportionality between N’s and Ω’s cannot be assumed.
Small numbers of complexes having a particular feature
will lead to overestimating the energies of these features.

(ii) If interactions between the ligand and the protein
are dominated by one (or few) contacts, FI ∼ F(σp,σl) and
the Taylor expansion is not valid. The energetics of such
complexes is not well-described by KB methods.

Specifically, our studies showed that a dataset of ∼300-
400 complexes chosen randomly from the Protein Data
Bank, was large and diverse enough to derive a satisfactory
KBP.41 The majority of the complexes in this set did not
have an energetically dominant interaction (i.e., an inter-
action whose magnitude would exceed ∼10% of the total
binding free energy). In metalloprotease complexes, how-
ever, metal-ligand interaction accounted for ∼50% of
binding free energy; our scoring function did not repro-
duce accurately the affinities of several metalloprotease
ligands.

B. Normalization of Probabilities and the Importance
of the Reference State. Determination of the constant of
proportionality Pref in eq 3 is necessary for deriving a
meaningful KBP. The value of Pref must be such that the
probabilities P derived from the database are properly
normalized and that the zero of free energy (reference
state) this constant defines is physically justified.

In our definition, the hypothetical reference state is a
purely random mixture of connected protein and con-
nected ligand atoms that do not interact, that is, Fref(σp,σl)
) 0 for all (σp,σl) contact pairs, given preserved-atom-type
composition and connectivity. In the early version of our
potential,34,42 SMoG96, we chose a simple approximation
for the reference state probability as average of contact
probabilities: Pref ) 〈P(σp,σl)〉(σp,σl).

Although SMoG96 performed satisfactorily in several
test cases, we noticed that it handled hydrophobic inter-
actions better than polar ones. We reasoned that this bias
might be a consequence of statistical effects present in a
database that are independent of energetic effects. For
example, if the database contains many complexes in
which protein binding sites are deep and hydrophobic,
the statistics of observed contacts will mirror the distribu-
tion of σp and will be skewed toward hydrophobic

FIGURE 1. Origin of the Boltzmann-like statistics in protein-ligand
complexes. The protein-ligand interaction free energy FI is the sum
of the free energies of all pairwise contacts (indicated by blue
arrows). A particular contact (σp,σl) (represented by the magenta
arrow) has free energy F(N,O). The number of ways in which the
remaining contacts can be arranged to give a stable complex is
proportional to the frequency of observing contact (σp,σl) in the
database, and decreases exponentially with increasing F(N,O).

FI ) ∑
σp

∑
σl

N(σp,σl)F(σp,σl) (1)

ln ΩFI(FI - F(σp,σl)) )

ln ΩFI(FI) -
d ln ΩFI(FI)

dF
|F)FI ‚F(σp,σl) (2)

P((σp,σl)) ) ∑
FI

P(FI)p((σp,σl)|FI) ) Prefexp(-âF(σp,σl))

(3)
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contacts, resulting in apparent strong attraction between
nonpolar atoms. To account for such nonenergetic effects
(or, equivalently, to account for the imperfection of the
database; cf. discussion in Section B), we redefined the
reference state probabilities43 as a product of the normal-
ization constant C and the nonenergetic contribution to
the observed probabilities S(σp,σl). Normalization of prob-
abilities gave eq 4, in which we retained, in contrast to
SMoG96 function, the average free energy as a parameter.

Finally, because the nonenergetic term S depends on
the numbers of protein and ligand atoms in the database
that give rise to a particular type of contact, we ap-
proximated it as S(σp,σl) ) N(σl)RN(σp)â, where 0 < R,â <
1 were parameters. The last two equations specified the
reference state of the SMoG2001 potential41,43 that is used
in the CombiSMoG method.44

Our methodology uses a simple, “coarse-grained”
definition of contacts based on two distance intervals (0-
3.5 and 3.5-4.5 Å) over which the statistics are collected
separately. Recently, more elaborate, distance-dependent
(“smooth-grained”) potentials have been constructed, for
example, the PMF function of Muegge and Martin.35 In
deriving such potentials, care must be taken to ensure that
there are enough contacts in all volume elements to
permit a KB approach. It is interesting to note that
smooth-graining does not necessarily improve the poten-
tial; in predicting binding affinities, PMF performs better
than SMoG96, but slightly worse than SMoG2001.41 Since
coarse-grained SMoG2001 and smooth-grained PMF are
derived from similar number of complexes, it seems that
it is the proper definition of the reference state and not
the geometrical features of the potential that is a crucial
feature of a good KBP.

C. From Probabilities to a Working Potential. Before
the formulas for contact free energies can be applied to
construct an actual potential, one needs to (i) define the
scoring function, (ii) specify the database from which the
probabilities are derived, and (iii) identify the R, â, and
〈F(σp,σl)〉 parameters. The first two tasks are relatively easy.
In SMoG, we defined the scoring function F as a sum of
pairwise interaction energies (eq 5; ∆(σp,σl) is 1 if atoms
σp and σl are in contact and is 0 otherwise).

The Brookhaven Protein Database (PDB) was an obvious
source of 3D structures, and we extracted from it 750
structurally diverse complexes. We classified the atoms on
the protein and on the ligand into 14 types according to
the element type, hybridization, partial charge, or donor/
acceptor properties. After specifying Rc at 4.5 Å (corre-
sponding to the second coordination shell of water around
an atom), the database statistics were collected, and the
contact energies were derived. We briefly mention that
the choice of the cutoff radius ensures that the influence

of solvent (water) on the contact distribution is implicitly
taken into account.

Determination of the parameters of the model required
a separate self-consistent optimization procedure that is
discussed in detail elsewhere.43 In short, a set of proteins
was chosen from the PDB, and ligands for these proteins
were created computationally. The generated complexes
were divided into two groups: a “toy” database and a
“test” database. An arbitrary form of a coarse-grained KB
potential was chosen (“true potential”), and scores of the
ligands in both groups were calculated according to this
potential. Next, the contact energies were back-extracted
from the toy database via a Boltzmann-like relationship
with SMoG2001 reference state and specified values of R,
â, and 〈F(σp,σl)〉 parameters. The obtained “derived po-
tential” was then used to recalculate the scores of the
ligands in the test database. If the formulation by which
the derived potential was extracted is valid, the derived
scores should correlate well with the true scores of the
test database complexes, and the optimal values of R, â,
and 〈F(σp,σl)〉 should be such that they maximize this
correlation. We found that the optimal values were R ) â
) 0.9 and 〈F(σp,σl)〉 ) 0.

D. Comparison with Other Methods. A coarse-grained
potential, such as SMoG, is ultimately a two-dimensional
array containing the contact free energies between atoms
of different types. Because SMoG and other similar
methods do not have to evaluate arithmetic functions or
perform ensemble averages to calculate binding free
energies, they are several times faster than “master
equation” methods and orders-of-magnitude faster than
free-energy perturbation methods.

Knowledge-based potentials have one potential advan-
tage over empirical scoring functions. There are only a
small number of complexes for which both the structure
and the binding constant are publicly available. Since
many of these complexes have similar ligands, it is unclear
whether there is sufficient diversity to adequately repre-
sent all features of the binding process when deriving an
empirical scoring function. In contrast, only structural
information is necessary for deriving knowledge-based
parameters, meaning that a larger and more diverse set
of complexes can be utilized. For this reason, knowledge-
based potentials may be more transferable than empirical
scoring functions to complexes not found in the training
database.

We compared the accuracy of SMoG2001 to that of a
well-known empirical scoring function (LUDI) and several
other KBPs (PMF and DrugScore) in our recent work.41

The performance of SMoG2001 (measured by the correla-
tion coefficients between computed and experimental
binding affinities of protein-ligand complexes) was su-
perior to that of LUDI and PMF and comparable to
DrugScore.

The free-energy perturbation methods are certainly
more accurate than knowledge-based ones, but their
scope is somewhat limited, since they are unable to rank
binding affinities of structurally diverse ligands. These
methods seem to be most useful in optimizing existing

ln C ) 〈ln
P(σp,σl)

S(σp,σl)〉(σp,σl)

+ 〈F(σp,σl)〉(σp,σl)
(4)

F ) ∑
p

∑
l

F(σp,σl)∆(p,l) (5)
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leads by introducing minor structural changes, rather than
in finding leads de novo.

3. KBP + Growth Algorithm ) CombiSMoG. A scoring
function can calculate binding free energy of a ligand in
an existing complex but it cannot, obviously, create new
ligands. What is needed for a complete lead-discovery
method is an algorithm for lead generation. There are two
types of such algorithms:45 (i) docking of known organic
molecules and (ii) de novo design that generates new
chemical structures in the binding site of a protein. The
latter is usually accomplished in two ways: either by
placing chemical fragments in energetically favorable
regions and connecting them by linking groups to form a
molecule, or by growing the molecule in the binding site
by sequentially adding chemical fragments. Several com-
prehensive reviews of the lead-generation methods have
been recently published5-10,45, and they will not be dis-
cussed in detail here. Instead, we will focus on the ligand
growth algorithm used in conjunction with SMoG2001
scoring function, and will place emphasis on the comple-
mentarities of these two components.

A. Dynamic Monte Carlo Growth Algorithm. Figure 2
illustrates the procedure to generate ligands in the active
site of the protein. Depending on a particular application,

the molecule can be grown either completely de novo or
from a starting fragment. In the first case, a hydrogen
molecule is placed at a random location within the
binding site and serves as a starting fragment. At each step
of the growth, a random fragment is chosen from a diverse
library of common chemical groups (e.g., phenyl, carbo-
nyl). The library contains ∼100 such groups, but can be
restricted if required. The chosen fragment is added to
the already grown part of the molecule by creating a bond
(“link”) between two randomly chosen heavy atoms. This
newly added moiety is rotated around the link in incre-
ments of usually 5° within energetically low torsional
space, and the SMoG2001 scores are calculated for each
conformation. The conformation with the lowest score is
retained, and its score is compared to that of the molecule
before addition of the fragment. If the addition lowers the
score of the ligand, it is accepted; if the score increases,
the addition is accepted conditionally with probability
proportional to exp(-â∆F), that is, the acceptance of the
addition is described by the Metropolis criterion.46 The
acceptance of “high-free-energy” fragments helps over-
come free-energy barriers and permits growing ligands
that join “low-free-energy” pockets in the binding site. The
fragments are added and evaluated until the grown ligand
reaches the prespecified size (typically, 30-40 heavy
atoms). The cycle is repeated many times to generate,
typically, ∼105-106 ligands, from among which the top-
ranking ones (∼50) are selected for further analysis and
are subjected to local energy minimization using the all-
atom CHARMM force field.23 This minimization relieves
the conformational strain and possible van der Waals
clashes in the generated ligands.

B. The Scoring Function and the Growth Algorithm
Work in Unison. Every de novo method for lead design
requires generation of many candidate ligands. If only few
ligands are created, it is highly probable that their scores
will not represent the lowest possible values (and, thus,
optimal designs) for a given target; the chances of
identifying high-affinity binders increase with an increas-
ing number of putative designs. The Monte Carlo (MC)
growth algorithm we use not only searches the structural
space efficiently, but also biases the search toward low-
free-energy (high-affinity) binders. This bias ensures that
the irrelevant, high-free-energy ligands are not screened,
and results in substantial savings in the CPU time. Even
with the MC growth, however, the number of molecules
that need to be created and evaluated to obtain a
statistically significant sample of the structural space is
still very large (>∼105) and requires the use of a fast
scoring function. SMoG certainly meets this demand,
because it allows evaluation of large numbers of candidate
molecules in short times (∼100 000/day on Octane UNIX
workstation). In other words, the fast SMoG potential is
an ideal one to use in conjunction with the MC ligand
generation method.

The opposite is also true: the MC growth benefits from
searching the free energy hypersurface defined by the
SMoG potential. Because of the binary definition of
contacts, this hypersurface does not have too many deep

FIGURE 2. CombiSMoG growth algorithm.
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and narrow free energy minima that would “trap” the
ligand growth. If the potential were made less coarse-
grained (like the distance-dependent PMF scoring func-
tion), one would expect the growth algorithm to be
frustrated by local free energy minima, and consequently,
the structural space would not be searched efficiently.

C. Combinatorial Lead Design in Silico. The SMoG2001
potential and the MC ligand growth algorithm are the two
components of the CombiSMoG lead design package. The
designation of this method as “combinatorial” derives
from its ability to probe a range of structural types that is
comparable to and less constrained than that of experi-
mental combinatorial methods. Indeed, the library of 100
molecular fragments creates a structural space of ∼M100

compounds that can potentially be evaluated (M is the
number of fragments per ligand). CombiSMoG can func-
tion either as a de novo combinatorial method or as a
tool for optimizing existing molecules when these mol-
ecules are used as starting fragments. The major limitation
of CombiSMoG as compared to wet combichem is that
the MC growth method does not guarantee the synthe-
sizability of the generated molecules. The synthetic fea-
sibility of the candidates has to be determined by an
organic/medicinal chemist. We are currently working on
developing algorithms that would prevent formation of
hard-to-make bonds during the ligand generation.

In summary, to design new leads using CombiSMoG,
one has to (i) specify a starting position/fragment for
ligand growth, (ii) generate large numbers of candidate
molecules, and (iii) examine the top-scoring ligands for
their synthetic feasibility and structural integrity. What
remains to be established is whether CombiSMoG’s bind-
ers are equally, and to what extent, potent in silico and
in vitro.

4. CombiSMoG at Work. As a proof-of-principle for
CombiSMoG, we used it to design new inhibitors for
human carbonic anhydrase II (HCA) metalloenzyme44, a
medically important, and structurally well-defined protein
that does not undergo marked conformational changes
upon ligand binding (CombiSMoG does not account for
protein rearrangement).

We chose the para-substituted benzene sulfonamide
H2NSO2-C6H4-CONH2 (BS) as a starting fragment for
CombiSMoG design. The binding orientation of this
moiety is well-established, with the sulfonamide group (as
an anion) coordinating to the zinc atom in the active site
of HCA. This fragment has three advantages as a starting
point for combinatorial simulations: (i) It is a relatively
weak binder (Kd ) 120 nM at 25 °C and pH 7.5)44 so that
binding affinities of the designed molecules could be
significantly enhanced. (ii) By starting with the BS moiety,
we avoid calculating interactions involving the zinc atom.
These interactions involve quantum mechanical effects
that are poorly described by CombiSMoG potential (cf.
Section 2A). (iii) There are many well-studied sulfona-
mide-based inhibitors of HCA47 against which we could
calibrate CombiSMoG’s performance.

The growth algorithm generated 100 000 candidate
ligands, from which the top 20 were chosen for further

analysis. Interestingly, the best and the fourth-best ligands
were stereoisomers of N-(3-indol-1-yl-2-methyl-propyl)-
4-sulfamoyl-benzamide (Figure 3A), differing in the chiral-
ity of the carbon atom â to the indole ring. These
molecules did not show any internal chemical incompat-
ibilities, and were deemed to be relatively easy to syn-
thesize. On the basis of the correlation between the
CombiSMoG scores of known HCA ligands and their
experimental binding affinities, we expected the R isomer
to bind with approximately picomolar activity, whereas
the S isomer should be a subnanomolar binder. The two
isomers were predicted to bind in different orientations.
In the R isomer, CombiSMoG placed the indole group in
the hydrophobic pocket defined by Phe131 and Leu92, but
in the S isomer, the indole moiety was predicted to contact
the hydrophobic patch defined by Phe131, Val135, Leu204,
and Pro202 (Figure 3A). This pair of stereoisomers offered
a challenging test of the accuracy of the program in
dealing with subtle structural differences.

Both compounds were synthesized, their binding af-
finities were measured, and the X-ray structures of the
complexes were obtained. The predicted and the observed
binding constants and binding orientations were in excel-
lent agreement (Figure 3B). The binding constants were
Kd ) 30 ((15) pM for the R stereoisomer and Kd ) 230
((45) pM for the S stereoisomer. The positions of the
atoms in predicted conformations were superimposed
with those of X-ray structures with RMSD <1 Å, except
for the methyl carbon in the S stereoisomer (2 Å) and the
indole group (2.84 Å in R, 3.15 Å in S). To our knowledge,
the R stereoisomer is the highest-affinity inhibitor of HCA
II now known.44,47

CombiSMoG would be further validated if it were
shown that it consistently designs potent ligands for a
variety of protein targets. Several experimental projects
are under way in our laboratory, but we will be able to
report their outcome only when the syntheses and assays
are completed. Unfortunately, those syntheses and assays
are much more time-consuming than CombiSMoG de-
sign. In the absence of the necessary experimental data,
one can use the existing protein-ligand complexes to
study the correlation between CombiSMoG’s scores and
the experimentally observed binding affinities: if the
CombiSMoG scores have the meaning of true binding free
energies, they should have a linear relationship to the
logarithms of the binding constants (Kd). Such a linear
relationship would indicate that CombiSMoG is capable
of predicting binding affinities accurately, irrespective of
the target.

Figure 4 shows the correlation between the logarithms
of experimental binding constants and CombiSMoG scores
of 119 complexes from eight structurally diverse subsets
of proteins. Within each subset, the correlation coefficients
range from r ) 0.19 for endothiapepsin complexes to r )
0.84 for serine proteases, and the standard deviations from
the linear fits are between σ ) 1.0 for endothiapepsin
complexes and σ ) 1.7 for metalloproteases. These results
indicate that CombiSMoG reproduces and potentially
predicts the experimental binding affinities within a subset
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of similar proteins with the accuracy of roughly 1.5 orders
of magnitude. We note, however, that the slopes and the

intercepts of the linear fits vary between the subsets of
proteins, especially if the ligand-protein interactions

FIGURE 3. (a) Schematic representation of the interactions of the HCA with the R (left) and the S (right) stereoisomers of the N-(3-indol-
1-yl-2-methyl-propyl)-4-sulfamoyl-benzamide ligand grown by CombiSMoG. The surface of the protein is represented by a black curve. Red
arrows indicate the contacts between protein residues and ligand atoms. The predicted (red) and X-ray (yellow) binding conformations of the
R and S ligands are shown in part b. The X-ray difference electron density maps at 2σ are colored purple.

FIGURE 4. CombiSMoG scores and the logarithms of the experimental binding constants for the testing set of 119 complexes from eight
subsets of proteins (aspartic proteases “asp”, serine proteases “ser”, metalloproteases “met”, carbonic anhydrase “ca,” sugar-binding proteins
“sug”, endothiopepsin “end”, purine nucleoside phosphorylase “pnp” and other proteins “oth”). The insert contains the following numbers
for each subset: the number of complexes, the correlation coefficient, and the standard deviation from the linear fit.
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involve quantum-mechanical effects (sulfonamide-based
ligands of HCA family) or if the ligands are large and have
many rotatable bonds (peptidic ligands of endothiopepsin,
END). When the HCA and END subsets are included, the
overall correlation coefficient is rather low (r ) 0.44 and
σ ) 2.1) but increases to 0.77 (and σ decreases to 1.5) when
they are omitted. We also note that for the set of 77
complexes used for validation of another widely used
knowledge-based scoring function, PMF35 (almost all of
which are included in our test set), our function gives a
slightly better correlation coefficient41 (0.68 by SMoG2001
versus 0.61 by PMF). From these observations, we con-
clude that when designing medium-sized ligands whose
binding to the target does not involve quantum mechan-
ical interactions, CombiSMoG should predict binding
affinities with the accuracy of 1.5-2 orders of magnitude.

Conclusions
CombiSMoG is a unique computational tool for designing
protein ligands that combines an accurate SMoG2001
knowledge-based potential and a flexibile, “combinatorial”
MC growth algorithm. In its first experimental test, Com-
biSMoG generated a very potent inhibitor of HCA and
correctly predicted its binding orientation; to our knowl-
edge, it is the first time that a computational method
created a lead that had an affinity higher than any known
ligand for a given protein target. Despite its initial success,
CombiSMoG needs further improvement. The knowledge-
based potential can be made more accurate by including
more complexes in the training database. Paradoxically,
we are most interested in complexes of poor binders, since
they provide better statistics of unfavorable contacts
(unfortunately, structures of low-affinity ligands are rarely
published, and the database buildup is rather slow). We
are also working on developing algorithms that would
account at the stage of growth for conformational changes
in the protein upon binding; for many targets, rational
lead design is impossible without taking these changes
into account. Finally, we are working on making the
growth algorithm more “chemical” by adding to it simple
synthetic rules that preclude formation of synthetically
impossible bonds during ligand growth.
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